User:MindlessGames
From A KoL Wiki
My main is RoyalTonberry
Consumable Chart
Name | range | Blender range |
Ode range |
Frosty's Mug range |
Blender and Ode |
Blender and Frosty's Mug |
Ode and Frosty's Mug |
Blender, Ode, and Frosty's Mug |
---|---|---|---|---|---|---|---|---|
ACs | 10-14.0 | 11-15.0 | 13-18.0 | 13-18.0 | 15-19.0 | 14-19.0 | 16-23.0 | 19-24.0 |
SHCs | 14-18.0 | 15-19.8 | 18-22.0 | 18-23.0 | 19-23.8 | 19-25.0 | 23-28.0 | 24-30.0 |
TPS drinks | 22-26.0 | 24-28.2 | 26-30.0 | 28-33.0 | 28-32.2 | 31-36.0 | 33-39.0 | 36-41.0 |
Supernova Champagne |
7-11.0 | 7-12.1 | 9-15.0 | 9-14.0 | 9-16.1 | 9-15.0 | 11-19.0 | 11-20.0 |
Name | Row Type | Base range |
Opossum range |
Munchies range |
Milk range |
Salad fork range |
Opossum and Milk |
Opossum and Munchies |
Munchies and Milk |
Opossum and Salad fork |
Milk and Salad fork |
Opossum, Munchies, and Milk |
Munchies, Milk, and Salad fork |
Opossum, Milk and Salad fork |
Opossum, Munchies, Milk, and Salad fork |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hi Meins | Range Average Adv/Full |
21-28.5 25.0 5.0 |
24-30.0 27.0 5.4 |
22-29.5 26.0 5.2 |
25-32.5 29.0 5.8 |
28-38.0 33.0 6.6 |
28-34.0 31.0 6.2 |
25-31.0 28.0 5.6 |
26-33.5 30.0 6.0 |
32-39.0 35.5 7.1 |
33-43.0 38.0 7.6 |
29-35.0 32.0 6.4 |
34-44.0 39.0 7.8 |
37-45.0 41.0 8.2 |
38-46.0 42.0 8.4 |
Spooky lo mein | Range Average Adv/Full |
14-20.8 17.8 4.45 |
16-21.9 19.4 4.85 |
15-21.8 18.8 4.7 |
18-24.8 21.8 5.45 |
19-28.0 23.5 5.875 |
20-25.9 23.4 5.85 |
17-22.9 20.4 5.1 |
19-25.8 22.8 5.7 |
21-29.0 25.0 6.25 |
24-33.0 28.5 7.125 |
21-26.9 24.4 6.1 |
25-34.0 29.5 7.375 |
26-34.0 30.0 7.5 |
28-35.0 31.5 7.875 |
Knob pasty | Range Average Adv/Full |
6-7.0 6.5 6.5 |
6-7.7 7.2 7.2 |
8-8.0 8.0 8.0 |
8-9.0 8.5 8.5 |
8-10.0 9.0 9.0 |
8-9.7 9.2 9.2 |
8-8.7 8.7 8.7 |
11-11.0 11.0 11.0 |
8-11.0 9.5 9.5 |
11-12.0 11.5 11.5 |
11-11.7 11.7 11.7 |
15-15.0 15.0 15.0 |
11-13.0 12.0 12.0 |
15-16.0 15.5 15.5 |
Disgorging and Pickpocketing
for n items all with drop rate p:
integrate over x: p*(1-p*x)^(n-1)
gives: -((1-p*x)^n) / n
evaluate 0 to 1 gives: -((1-p)^n) / n + 1/n
simplifying: 1/n * (1 - (1 - p)^n)
Castle data
it looks like you can expect:
18% non-combats at +0% combat frequency
11.5% non-combats at +10% combat frequency
5.5% non-combats at +15% combat frequency