User:MindlessGames
From A KoL Wiki
My main is RoyalTonberry
Consumable Chart
What I'm trying to do with these is come up with a way to display realistic bonuses, so that I can put it on the Consumable page (or maybe revamp the best foods/drinks pages?)
Name | Row Type | Base range | Blender range |
Ode range |
Frosty's Mug range |
Blender and Ode |
Blender and Frosty's Mug |
Ode and Frosty's Mug |
Blender Ode and Frosty's Mug |
---|---|---|---|---|---|---|---|---|---|
ACs | Range Average Adv/Drunk |
10-14.0 12.00 3.00 |
11-15.00 13.00 3.25 |
13-18.00 15.50 3.88 |
13-18.00 15.50 3.88 |
15-19.00 17.00 4.25 |
14-19.00 16.50 4.12 |
16-23.00 19.50 4.88 |
19-24.00 21.50 5.38 |
SHCs | Range Average Adv/Drunk |
14-18.0 16.00 4.00 |
15-19.80 17.80 4.45 |
18-22.00 20.00 5.00 |
18-23.00 20.50 5.12 |
19-23.80 21.80 5.45 |
19-25.00 22.00 5.50 |
23-28.00 25.50 6.38 |
24-30.00 27.00 6.75 |
TPS drinks | Range Average Adv/Drunk |
22-26.0 24.00 4.00 |
24-28.20 26.20 4.37 |
26-30.00 28.00 4.67 |
28-33.00 30.50 5.08 |
28-32.20 30.20 5.03 |
31-36.00 33.50 5.58 |
33-39.00 36.00 6.00 |
36-41.00 38.50 6.42 |
Supernova Champagne |
Range Average Adv/Drunk |
7-11.0 9.00 3.00 |
7-12.10 9.60 3.20 |
9-15.00 12.00 4.00 |
9-14.00 11.50 3.83 |
9-16.10 12.60 4.20 |
9-15.00 12.00 4.00 |
11-19.00 15.00 5.00 |
11-20.00 15.50 5.17 |
schnapps | Range Average Adv/Drunk |
1-3.0 2.00 2.00 |
1-3.30 2.30 2.30 |
2-4.00 3.00 3.00 |
1-3.00 2.00 2.00 |
2-4.30 3.30 3.30 |
1-4.00 2.50 2.50 |
2-5.00 3.50 3.50 |
2-5.00 3.50 3.50 |
Name | Row Type | Base range |
Opossum range |
Munchies range |
Milk range |
Salad fork range |
Opossum and Milk |
Opossum and Munchies |
Munchies and Milk |
Opossum and Salad fork |
Milk and Salad fork |
Opossum, Munchies, and Milk |
Munchies, Milk, and Salad fork |
Opossum, Milk and Salad fork |
Opossum, Munchies, Milk, and Salad fork |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hi Meins | Range Average Adv/Full |
21-28.50 25.00 5.00 |
23-30.95 27.45 5.49 |
22-29.50 26.00 5.20 |
25-32.50 29.00 5.80 |
28-38.00 33.00 6.60 |
27-34.95 31.45 6.29 |
24-31.95 28.45 5.69 |
26-33.50 30.00 6.00 |
30-41.00 35.50 7.10 |
33-43.00 38.00 7.60 |
28-35.95 32.45 6.49 |
34-44.00 39.00 7.80 |
36-46.00 41.00 8.20 |
37-47.00 42.00 8.40 |
Spooky lo mein | Range Average Adv/Full |
14-20.80 17.80 4.45 |
15-22.88 19.38 4.84 |
15-21.80 18.80 4.70 |
18-24.80 21.80 5.45 |
19-28.00 23.50 5.88 |
19-26.88 23.38 5.84 |
16-23.88 20.38 5.10 |
19-25.80 22.80 5.70 |
20-30.00 25.00 6.25 |
24-33.00 28.50 7.12 |
20-27.88 24.38 6.10 |
25-34.00 29.50 7.38 |
25-35.00 30.00 7.50 |
26-37.00 31.50 7.88 |
Knob pasty | Range Average Adv/Full |
6-7.00 6.50 6.50 |
6-7.70 7.20 7.20 |
8-8.00 8.00 8.00 |
8-9.00 8.50 8.50 |
8-10.00 9.00 9.00 |
8-9.70 9.20 9.20 |
8-8.70 8.70 8.70 |
11-11.00 11.00 11.00 |
8-11.00 9.50 9.50 |
11-12.00 11.50 11.50 |
11-11.70 11.70 11.70 |
15-15.00 15.00 15.00 |
11-13.00 12.00 12.00 |
15-16.00 15.50 15.50 |
boring spaghetti | Range Average Adv/Full |
4-11.00 7.50 2.50 |
5-11.20 8.20 2.73 |
6-12.00 9.00 3.00 |
5-15.00 10.00 3.33 |
6-15.00 10.50 3.50 |
7-15.20 11.20 3.73 |
7-12.20 9.70 3.23 |
8-16.00 12.00 4.00 |
7-15.00 11.00 3.67 |
7-20.00 13.50 4.50 |
9-16.20 12.70 4.23 |
11-21.00 16.00 5.33 |
10-20.00 15.00 5.00 |
12-22.00 17.00 5.67 |
hell ramen | Range Average Adv/Full |
22-28.40 25.40 4.23 |
24-30.84 27.84 4.64 |
23-29.40 26.40 4.40 |
26-32.40 29.40 4.90 |
29-37.00 33.00 5.50 |
28-34.84 31.84 5.31 |
25-31.84 28.84 4.81 |
27-33.40 30.40 5.07 |
32-41.00 36.50 6.08 |
34-43.00 38.50 6.42 |
29-35.84 32.84 5.47 |
36-44.00 40.00 6.67 |
37-46.00 41.50 6.92 |
38-47.00 42.50 7.08 |
reagent pasta | Range Average Adv/Full |
21-28.80 25.30 4.22 |
24-30.18 27.18 4.53 |
22-29.80 26.30 4.38 |
25-32.80 29.30 4.88 |
28-38.00 33.00 5.50 |
28-34.18 31.18 5.20 |
25-31.18 28.18 4.70 |
26-33.80 30.30 5.05 |
32-40.00 36.00 6.00 |
33-43.00 38.00 6.33 |
29-35.18 32.18 5.36 |
34-44.00 39.00 6.50 |
37-45.00 41.00 6.83 |
38-46.00 42.00 7.00 |
Disgorging and Pickpocketing
for n items all with drop rate p:
integrate over x: p*(1-p*x)^(n-1)
gives: -((1-p*x)^n) / n
evaluate 0 to 1 gives: -((1-p)^n) / n + 1/n
simplifying: 1/n * (1 - (1 - p)^n)
Castle data
it looks like you can expect:
18% non-combats at +0% combat frequency
11.5% non-combats at +10% combat frequency
5.5% non-combats at +15% combat frequency