Talk:The Institute for Canadian Studies

From A KoL Wiki

At level 22 (and base Myst 478), 10 adventures here on a non-stat-day gave me 698 Mysticality subpoints. --Greycat 12:56, 14 November 2006 (CST)

At level 23 (and base Myst 496), 10 adventures on a non-stat-day gave 767 Myst. --Greycat 11:58, 15 November 2006 (CST)

Level 23 and base Myst 511, 10 adventures non-Myst day -> 750 Myst. (This gives me base 512 Myst, close to 513.) Now let's try a few individual adventures:

102, 80, 58, 105 (base is now 513)
105, 67, 103, 76, 63, 102, 73, 61, 94, 81, 96, 53, 54 (base is now 514)
95, 93, 105, 56, 92, 80, 88, 86, 68, 67, 98, 97 (base is now 515)

Mean = 82, Minimum = 53, Maximum = 105. Does not appear to be normally distributed (no bell curve). Will need a lot more data (at differing levels) to attempt to find a formula. --Greycat 17:08, 16 November 2006 (CST)

Table time!

Level Myst Data Mean
23 530 77 67 57 78 98 107 92 76 81
23 531 110 101 101 104 111 75 82 64 107 56 72 110 91
23 532 88 85 98 95 83 103 62 61 100 72 93 76 84
24 533 91 60 78 63 106 103 68 56 104 88 70 110 74 82
24 534 70 99 99 91 85 88 106 58 65 68 68 85 88 82
24 535 67 81 100 58 64 91 96 56 109 90 85 84 95 82
24 536 91 80 56 92 109 99 67 92 94 61 94 74 80 83
24 537 58 64 68 103 93 88 91 99 68 79 111 78 110 85
24 538 62 69 86 57 101 95 101 59 87 64 80 60 69 77 76
24 539 101 98 110 60 91 70 72 70 102 61 96 56 65 80
24 540 108 110 101 74 101 108 81 112 104 110 100
24 543 59 100 74 100 103 84 68 82 70 66 93 73 86 98 82
24 544 103 56 64 88 64 66 80 103 73 100 70 75 107 80
24 545 92 87 72 111 104 104 111 64 86 110 62 78 90
24 546 72 70 73 102 101 91 78 70 63 103 101 89 81 84
24 547 65 83 72 66 114 70 67 61 67 101 88 62 94 91 78
24 548 103 106 70 61 63 77 67 60 97 90 102 76 59 58 77
24 549 101 57 107 109 82 80 99 57 91 71 81 111 61 85
24 550 95 77 110 68 67 100 101 104 95 65 101 97 90
24 551 106 111 94 71 107 110 93 101 105 66 84 98 95
24 552 76 57 113 90 98 97 86 106 110 108 58 101 91
24 553 89 68 111 79 72 101 59 101 81 102 91 65 58 82
24 554 86 71 75 68 104 102 73 96 68 93 68 68 91 75 81
24 555 68 110 77 95 112 101 110 80 108 68 67 63 89 88
24 556 99 101 98 93 80 93 84 107 75 83 89 101 91
24 557 92 106 63 103 88 87 65 64 88 77 70 105 65 82
24 558 97 112 104 85 103 91 77 68 83 107 99 90 93
24 559 70 71 85 107 98 94 64 62 112 70 105 69 59 74 81
24 570 60 85 80 112 67 114 115 88 89 80 114 99 63 89
25 610 69 105 98 113 75 81 123 101 90 111 66 116 77 94
25 611 99 121 107 114 78 118 110 70 66 71 119 76 103 96
25 612 81 110 103 100 114 106 113 117 99 82 117 103
25 613 101 113 104 99 68 75 77 66 86 101 104 110 119 94
25 614 126 93 66 87 104 66 96 111 86 91 75 82 100 64 89
25 615 68 124 125 101 128 128 95 113 68 88 86 72 116 100
25 616 103 94 78 98 84 103 107 102 91 117 75 122 97
25 617 114 111 101 110 113 84 90 97 105 115 75 74 99
25 618 108 77 87 105 124 65 123 92 114 126 96 108 85 100
25 619 112 75 109 111 67 113 73 111 82 124 108 96 98
25 620 75 128 94 125 77 79 68 105 75 98 92 86 69 92 90
25 621 66 67 86 87 115 117 118 79 97 74 92 114 96 92
25 622 107 71 119 115 68 66 128 106 105 121 74 102 106 99
25 623 86 127 78 89 80 65 66 105 129 103 72 75 104 67 89
25 624 109 120 97 86 95 93 80 96 64 73 77 72 110 125 92
25 625 71 80 130 66 91 121 71 83 95 127 90 91 126 95
25 626 72 69 67 127 67 110 67 89 109 102 117 90
25 627 80 77 94 86 65 86 112 106 89 78 128 100 82 104 91
25 628 77 102 90 73 73 102 104 81 73 116 111 69 76 109 89
26 630 98 109 74 101 125 130 116 110 67 74 103 123 78 100
26 631 73 102 98 119 84 120 78 74 131 72 78 95 83 92
26 632 110 111 93 124 121 97 77 80 124 97 122 113 105
26 633 113 79 69 71 111 115 122 89 70 86 102 71 87 83 90
26 634 75 120 77 120 112 72 68 130 108 120 65 85 76 80 93
26 635 104 93 85 98 124 115 114 89 119 113 104 117 106
26 636 123 113 79 84 82 89 93 105 72 106 84 76 130 95
26 637 123 113 102 127 74 76 125 105 71 90 81 82 97 97
26 638 114 128 132 120 78 67 100 95 119 107 85 128 106
26 639 101 98 114 116 88 87 95 86 67 110 106 92 108 71 95
26 640 101 70 74 122 69 109 76 66 77 110 116 106 125 93
26 641 71 66 126 109 114 118 95 126 80 105 91 75 78 70 94
26 642 69 86 108 128 73 108 88 78 124 123 82 107 105 98
26 643 79 75 95 107 116 68 127 129 97 101 72 89 79 126 97
26 644 84 128 132 90 98 104 87 108 118 121 79 79 102
26 645 134 88 78 88 133 92 131 105 124 103 116 76 105
26 646 84 116 83 116 91 117 70 122 85 111 91 110 68 97
26 647 108 69 75 116 106 109 131 110 123 77 81 112 98 101
26 653 87 76 82 76 96 128 94 81 83 132 103 107 110 96
26 654 75 85 124 68 119 95 94 97 109 97 106 101 92 97
26 655 77 107 126 87 133 81 102 106 121 84 132 72 88 101
26 656 130 134 108 111 126 88 71 135 115 85 77 118 108
26 657 76 110 129 105 69 80 105 106 77 93 100 116 68 102 95
26 658 88 84 95 68 105 133 116 109 124 73 82 94 85 78 95
26 659 83 129 132 112 116 116 111 92 111 108 120 79 109
26 660 125 70 91 113 113 113 75 115 97 98 130 74 100 101
26 661 80 80 74 108 119 75 127 83 103 77 116 102 116 92 96
26 662 113 88 69 69 89 117 92 76 125 120 84 69 105 122 95
26 663 75 91 78 83 90 75 135 82 81 109 126 81 117 127 96
26 664 76 132 70 131 131 103 137 122 80 98 88 85 104
26 665 104 117 80 96 88 131 99 76 114 118 100 100 127 103
26 666 94 138 104 136 129 69 106 108 109 123 127 86 110
26 667 111 123 117 89 129 135 86 75 130 118 125 131 114
26 668 115 86 115 96 137 114 110 113 88 70 85 126 136 107
26 669 102 129 96 113 129 101 90 130 122 104 78 121 109
26 670 106 120 77 77 105 82 118 72 87 139 78 137 103 100
26 671 93 80 88 75 88 110 95 107 114 86 86 71 92 112 92
27 680 95 140 106 120 120 112 124 132 141 134 131 123
27 681 116 119 130 97 82 120 100 101 85 90 96 111 97 103
27 682 112 108 110 112 89 132 88 73 108 83 78 116 79 76 97
27 683 86 108 76 74 71 76 113 109 139 83 78 113 90 98 133 96
27 684 113 128 81 132 106 138 108 108 83 72 93 81 72 101
27 685 73 83 108 141 125 84 78 121 108 142 122 93 88 105
27 686 106 106 121 121 112 99 91 127 92 91 119 87 130 107
27 687 81 89 129 136 137 125 125 127 108 78 94 85 109
27 688 134 124 102 139 92 118 109 74 98 117 74 104 78 104
27 689 107 95 83 132 139 118 82 87 72 132 95 78 107 95 101
27 690 112 79 121 78 82 91 80 136 111 124 82 116 100 139 103
27 691 92 141 110 127 136 134 94 117 141 134 126 122
28 740 105 132 142 82 81 109 119 138 103 80 127 135 81 110
28 741 116 149 77 131 132 114 148 134 120 94 76 123 81 115
28 742 102 108 151 96 120 126 88 97 105 108 125 102 131 112
28 743 151 128 147 101 122 137 95 133 101 123 90 86 110 117
28 744 153 149 107 77 141 133 82 94 105 97 102 131 112 114
28 745 150 89 124 134 145 151 106 119 127 141 116 118 126
28 746 95 103 140 79 128 111 119 146 153 100 82 133 147 118
28 747 97 98 99 139 89 146 108 153 138 78 117 92 111 112
28 748 142 110 88 88 92 108 147 112 124 90 127 150 111 114
28 749 108 145 89 139 85 129 112 133 143 133 139 130 123
28 750 78 109 111 108 132 153 90 144 151 90 129 84 124 115
28 751 143 108 116 120 107 144 110 140 147 114 93 143 123
28 752 116
28 753 81 133 101 91 135 78 142 125 105 124 106 97 79 99 106
28 754 77 147 155 122 112 132 114 111 154 79 125 133 121
28 755 113 95 147 98 139 116 134 103 145 80 87 92 121 117 113
28 756 122 103 119 111 83 140 88 102 80 85 110 145 122 83 106
28 757 95 151 93 149 153 80 90 128 141 96 79 130 92 113
28 758 149 104 134 124 114 126 101 81 139 113 81 87 95 152 114
28 759 134 94 142 133 142 133 83 152 104 126 99 91 119
28 760 103 112 116 103 149 94 88 144 111 104 145 129 108 115

Looking at the data as a whole, so far, it would appear that the stat gains are uniformly distributed within a certain range, and this range depends on your base mysticality, not your level.

My first guess at a formula for this is: a random number from Myst/10 to Myst/5, plus a random number from 3 to 6. Although that's just off the top of my head, without doing a verification against the data yet. --Greycat 17:08, 29 November 2006 (CST)

Taking a short break from Crimbo activities to look at my data.... I wrote a quick little script to check the hypothesis that every stat-gain value for base mysticality M lies between (M/10 + 2) and ((M/10)*2 + 6) -- and they all do. Another possible hypothesis is that the values lie between (M/10 + 2) and (M/5 + 5) -- the data also fit that pattern. Telling the difference between these two hypotheses would require a sample size way beyond my patience (and knowledge of statistics) to collect and analyze. (Or maybe I just need to go there at level 1... hmm.) In either case, the range only differs by 1 point at the top end.

So for now, I'm content with the statement that The Institute gives you a myst substat gain which is a random number from (M/10) to (M/10)*2, plus a random number from 2 to 6, where M is your base mysticality.

Data from people visiting The Institute at very low levels would be welcome. --Greycat 13:43, 18 December 2006 (CST)


Ask and ye shall receive:


mysticality: substat gain

22: 8 7 8

23: 9 12 8 13 9

24: 12 12 14 9

25: 13 8 9 15 15

26: 9 9 11 11 10

27: 12 15 15 9 12

28: 9 8 13 15

29: 12 8 15 9 10 11


--Alienchickenpie 13:23, 7 January 2007 (CST)

Did you do those on January 7th? That was a Mysticality day, which distorts the results. (Phew... I thought for a second my formula was totally wrong at low levels! But if all your 15s are actually 10s, then it's still OK.) --Greycat 15:10, 8 January 2007 (CST)

You give two different possible upper bound equations: ((M/10)*2 + 6) and (M/5 + 5). You said that they both fit your data. But isn't ((M/10)*2 + 6) = (M/5 + 6)? Anyway, here's some lower level data I collected. I've bolded green the first time each time a new high number occurs, italicized red the last time each low number occurs, and included two new columns which list your hypothesized low and (M/5)+5 for the high.

Level Myst Data Mean (M/10)+2 (M/5)+5
1 0 5 2.0 5.0
1 2 3 4 3.5 2.2 5.4
1 3 3 4 3.5 2.3 5.6
1 4 2 3 4 3 2.4 5.8
2 5 5 6 5.5 2.5 6.0
2 6 4 3 6 4.3 2.6 6.2
2 7 3 3 6 4 2.7 6.4
3 8 4 6 5 4 4.8 2.8 6.6
3 9 6 3 3 6 4.5 2.9 6.8
3 10 3 5 7 6 5.3 3.0 7.0
3 11 3 7 6 4 6 5.2 3.1 7.2
3 12 6 5 7 3 5.3 3.2 7.4
4 13 4 5 5 6 3 7 5 3.3 7.6
4 14 5 7 6 3 7 5.6 3.4 7.8
4 15 6 5 6 8 4 5.8 3.5 8.0
4 16 5 4 5 5 5 7 7 5.4 3.6 8.2
4 17 8 4 8 4 4 5 5.5 3.7 8.4
4 18 6 7 7 5 6 8 6.5 3.8 8.6
4 19 6 4 4 6 8 4 8 5.7 3.9 8.8
5 20 7 8 7 8 5 7 4.0 9.0
5 21 7 8 8 9 4 7 7.2 4.1 9.2
5 22 6 8 5 5 9 8 5 6.6 4.2 9.4
5 23 8 9 4 7 6 9 8 7.3 4.3 9.6
5 24 9 5 5 9 6 9 9 7.4 4.4 9.8
5 25 10 5 10 9 6 9 8.2 4.5 10.0
5 26 5 8 7 8 7 9 8 7.4 4.6 10.2
5 27 5 8 10 7 9 10 5 7.7 4.7 10.4
5 28 7 8 10 10 8 8 5 8 4.8 10.6
6 29 5 8 9 10 7 9 5 9 7.8 4.9 10.8
6 30 11 6 8 9 9 8 5 8 5.0 11.0
6 31 5 11 7 8 7 9 5 8 7 7.4 5.1 11.2
6 32 8 8 9 11 7 10 7 8.6 5.2 11.4

I think your formula is pretty accurate san the +6 for the upper bound. At least by looking at my data it seems that +5 is more appropriate. It's probably safe to add to the article. Odds are that the formulas for Gnirf, the World's Sneakiest Gnome and The Gym are identical but could use some verification. --TheDotGamer 20:11, 8 January 2007 (CST)